

Economic valuation of ecosystem services – an introduction

Nathalie Olsen & Vanja Westerberg – IUCN Economics

Workshop on Valuing Ecosystems – can it help make business make better decisions?

WCC Jeju, 9 September 2012

Why do we try to place monetary values on environmental goods and services?

- Many market activities have consequences external to the market - that fall on the public.
- Whenever the activity impacts some global public good e.g.
 The landscape or some ecosystem service such as dlimate
 regulation or nutrient recycling.
- Global public goods are non-excludable and non-rival → Unpriced.
- The market fails to provide ecosystem services in their optimal 'quantities'
- Global public GOODs will be underprovided.

Accounting for externalities

The Economics of Ecosystems & Biodiversity

Business impacts at sector & country-level

- Flooding damage in 1998
- Property loss from flooding pre - 1998
- Loss of river transport capacity
- Reservoir and lake sedimentation
- Desertification
- Reduced lumber output
- Loss of plant nutrients
- Lost water runoff
- Reduced precipitation

- US\$12.2 billion estimated ecological cost of deforestation in China (1950-88)
- 60% of this cost is attributed to logging
- 64% of logging was for construction and materials sectors
- External costs = 178% of the market price of timber (1998)

Source: TEEB for Business, 2010 (Annex 2.1).

Cost Benefit Analysis & Total Economic Value

- There is no absolute measure of a good or a service.
- We need to know what we are valuing relative to some other state.
- Need to account for the Total Economic Value of that change.

Cost Benefit Analysis & Total Economic Value

Measuring and valuing bio-physical changes

All valuation methods rely on the integration of ecology and economics

Welfare Economics Revealed preference methods

- Estimate peoples' WTP from choices made in a market complementary to the 'good or service' we are valuing.
- Travel cost methods
- Hedonic pricing analysis
- EX-POST

Hedonic pricing

- Estimates the value of an environmental good or service indirectly in a proxy market
- Compare the prices or values of two goods in an existing market, which differ only with respect to an environmental attribute
- Price differential = value of the environmental attribute
- Main applications:
 - Houses which are identical except for access to scenic view (landscape values)
 - Property in congested areas (air quality, noise), property near green areas (access to recreation, scenic views)

Travel Cost method

- Add up time and travel cost expenses that people incur to visit a site to estimate the minimum willingness to pay for an environmental good or service
- Measure all the costs that occur when visiting a site (travel costs, entrance fees, foregone earnings)
- Main applications
 - To value recreational sites (proposed changes to sites size, quality)
 - EDP (Portugal) valued fishing and boating on system of reservoirs and canals (part of its hydropower network)

Challenges

Alternative sites may exist, visits may be multi-purpose, only captures use values

Welfare Economics Stated preference methods

- Hypothetical market
 - Contingent valuation methods
 - Choice experiment
- Merits:
- Use and non-use (existence) values
- Can be used: Ex-ante & ex-post

farm associated recreational activities

Stated preference methods – contingent valuation and choice modelling

- When no proxy markets exist with information about people's preferences for ES goods and services
- Can be used to estimate value of any type of ESS (non-use)
- Contingent valuation (CV) asks people directly how much they are WTP (or WTA) for a change in ecosystem service provision
- Choice modelling (CM) focuses on the ranking of alternatives with different attributes in order to value individual attributes of environmental quality

Contingent valuation and choice modelling

Survey methods require:

- Careful design of a scenario which is easily understood by respondents
- Choose the target population and identify an unbiased sample (large sample with random selection or smaller stratified samples)
- Conduct face to face interviews (best) or telephone interview or mail surveys
- Choose carefully the payment vehicle (tax, donation, who has to pay?)
- Choose the elicitation method (open-ended questions, referendum questions)
- follow-up questions: which motives behind answers

Choice modelling

- Similar to CVM, but people are asked to choose between sets of environmental goods and services with different prices
- Focuses on trade-offs among scenarios
- E.g. improved water quality in a lake will affect a number of services – can rank importance of drinking water, fishing, swimming, BD
- may avoid some problems found in contingent valuation
 - Able to compare different aspects of a hypothetical scenario and determine preferences over attributes
 - scale can be inserted into the survey design, which weakens the embedding effect
 - there is less rejection of scenarios by participants

Contingent valuation - some challenges

- problems with surveys may lead to some bias
 - selection bias, starting point bias, payment vehicle problems
 - warm glow or yea saying, protest no
 - information, understanding
- problems of constructed preferences
 - free-riding, difference between real and hypothetical behaviour
- embedding effect = scale effect
 - value for one species same as for whole ecosystem
- Can be costly and time intensive, require survey pre-testing and time spent for respondents to understand questions
- Results affected by survey method, payment vehicle, hypothetical nature of questions

Contingent valuation and financing to save elephants in Sri Lanka

- elephants consume 150kg of food every day: crop raiding is a big problem in densely inhabited areas and causes injuries
- a survey of impacts on 480 local households and their willingness to accept compensation
- a second survey among Colombo city residents: willingness to pay for the conservation of elephants exceeds the funding needed for compensating rural elephant damage
- Ceylinco Insurance presented a new scheme, partly CSR and partly profit driven: proposed small charge on top of premium payments of life and vehicle policy holders to finance a trust for compensation payments

Source: H. Gundimeda TEEB DO

The production function approach

- Based on scientific knowledge of relationship between ESS and a marketed output, e.g. pollination and fruit production
- ESS are inputs into production function of a marketed good
 - Step 1 identify physical effects of change in ESS on good
 - Relies on precise cause-effect models
 - Step 2 impact of change valued using quantity and price of marketed good
- Applications
 - E.g. erosion control of forests and rice production

Cost-based and price-based approaches

- The value of an ecosystem service is estimated based on.
 - the cost of actions to replace these services (replacement cost)
 - Dikes replace flood regulation service
 - what people pay to avoid the adverse effects of losing services or to replace lost services (avoided damage costs)
 - Noise
- Price-based approaches
 - Market prices (hunting permits, fish sold in a local market)
- Cost-based and price-based estimates are not based on 'preferences'
 - Underestimated relative to revealed preference and stated preference methods.

- Involves transfering value estimates from existing economic valuation studies to the study site in question
- making adjustments where appropriate
- inexpensive and quick to implement
- must be carefully and transparently applied to avoid significant errors.

NPV =
$$\sum_{t=0}^{T} (B_t - C_t)/(1 + r)^t$$