

The Economics of Ecosystems and Biodiversity

Salman Hussain, Alistair McVittie & Luke Brander

WAGENINGEN UNIVERSITY WAGENINGEN UR

Netherlands Environmental Assessment Agency

IVM Institute for Environmental Studies

The TEEB Quantitative Global Assessment: Outline

以 SAC

- Background to project
- Biophysical modelling
- Spatial data
- Benefit transfer
 - TEEB database
 - Value functions
- An example
 - Investment in agricultural knowledge, science and technology (AKST)

Quantitative Assessment: linking science and social science

- Biophysical policy model using GLOBIO3 model
 - Undertaken by Netherlands Environmental Assessment Agency (PBL)
 - Assessment of 8 options to counteract terrestrial biodiversity loss
- Economic assessment
 - Valuing expected changes in ecosystem services, i.e. applying the Ecosystem Approach at global scale

Biophysical model – policy scenarios

Policy	Policy change	Time scale
Agricultural productivity: closing the yield gap	40% crop and 20% livestock productivity increase (compared to 25% baseline)	2050
Post-harvest sector	Reduce post harvest losses from 30 to 15%	2050
Global agricultural trade	Full trade liberalisation from 2020	2050
Reduced impact logging	Replacement of conventional logging with RIL	2050
Protected areas	Expansion of protected areas from 14% of total land area to:1. 20% of each eco-region2. 50% of each eco-region	2030
Reduced emissions from deforestation and forest degradation (REDD)	Protect from agricultural expansion:1. All dense forest and2. All forest and woodlands	2030
Bio-energy	Increase from 0.5 to 4 million km ² for biomass	2050
Global dietary patterns	 Global transition to 'healthy diet' Complete substitution of meat with plant protein 	2050

Quantitative assessment

• QA intends to measure costs and benefits of policy scenarios relative to baseline

IMAGE/GLOBIO3 model framework

SAC

Biophysical model - baseline scenario

- Baseline developed from OECD projections:
 - World population grows from 6 to 9 billion
 - Fourfold increase in economic output (~ 2.8% per annum)
 - Per capita incomes grow particularly in BRIC countries
 - Agricultural productivity increases at 1.8% per annum does not keep pace with population or consumption patterns
 - No change in environmental or trade legislation
 - Timber demand increases with population and incomes
 - Global mean temperature increases to 1.6°C above pre-industrial level
 - No change in protected areas (14%)

Mean Species Abundance 2000

Mean Species Abundance 2030

Mean Species Abundance 2050

Baseline MSA change 2050

Policy scenario outcomes

 Baseline global MSA loss is estimated to be 9% (71 to 62) between 2000 and 2050

TEEB valuation database

- Developed at Wageningen University
 - 1298 individual value estimates

Global biome map

Global Biomes

Terrestrial biome coverage

Terrestrial Biomes

The economic valuation appraisal

- 1. There will be an expected change in land cover in 2030/2050 compared to 2000: *Business As Usual*
- 2. Compare this to the land cover projection *with the policy intervention* at 2030/2050
- 3. The bio-physical analysis estimates how much more or less of each biome there will be per IMAGE-GLOBIO region
 - temperate forest, tropical forest and grassland biomes
- 4. For every patch of temperate forest in the OECD (243,491 patches) we assume the same percentage change.
 - e.g. +2.4% for 'reduced deforestation'
- 5. Given this assumed change, what is the expected value of the change in ecosystem services provided by each of these 243,491 patches?
 - For OECD temperate forests, \$36.3 billion 2007 USD/annum to 2030

Bio-physical changes example: 'reduced deforestation' example

Spatial variables

- Additional spatial data within 10, 20 and 50 km radii of each site:
 - Area (ha) of forest, lakes and rivers, mangrove, wetland, grassland, coral reef
 - Population density (person/km²)
 - Gross cell product (2005\$US) measure of economic output
 - Urban area (ha)
 - Roads (km)
 - Human appropriation of NPP (gC/m²/yr)
 - Accessibility index travel time to urban centres

Example: Investment in AKST

Agricultural Productivity - High AKST

Value change 2000 to 2050 (US\$ bn 2007)

MSA change High AKST

No investment in AKST

Agricultural Productivity - No AKST

Value change 2000 to 2050 (US\$ bn 2007)

MSA change: No AKST

Summary results AKST

Annual land use change benefits
 2050 = \$161 billion

Central and South America = \$63.2 bn Russia and Central Asia = -\$6.2 bn

- Aggregate 2000 to 2050 = **\$2964 bn**
- Cost 2000 to 2050 = **\$568 bn**
- Benefit/Cost ratio = 5.2
- Carbon benefits = \$6343 billion
- B/C ratio including carbon = 16.4
 - 1% Discount Rate, UK Social Cost of Carbon
 - 4% DR, POLES model carbon values BC ratio is 63.1

Conclusions and looking forward

• Summary:

- AKST/REDD/PA to 20% of eco-regions provides significant net benefits in land cover change impacts
- Important regional impacts

Next steps:

- Intermediate points (e.g. 2010) to improve trajectory
- Compare MSA change profile with value changes
- Isolate values by type of ecosystem service
- TEEB III national level analysis
- Presentation at Copenhagen Consensus